Coherent States in Geometric Quantization

نویسنده

  • William D. Kirwin
چکیده

In this paper we study overcomplete systems of coherent states associated to compact integral symplectic manifolds by geometric quantization. Our main goals are to give a systematic treatment of the construction of such systems and to collect some recent results. We begin by recalling the basic constructions of geometric quantization in both the Kähler and non-Kähler cases. We then study the reproducing kernels associated to the quantum Hilbert spaces and use them to define symplectic coherent states. The rest of the paper is dedicated to the properties of symplectic coherent states and the corresponding Berezin-Toeplitz quantization. Specifically, we study overcompleteness, symplectic analogues of the basic properties of Bargmann’s weighted analytic function spaces, and the ‘maximally classical’ behavior of symplectic coherent states. We also find explicit formulas for symplectic coherent states on compact Riemann surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

Geometric Quantization from a Coherent State Viewpoint

A fully geometric procedure of quantization that utilizes a natural and necessary metric on phase space is reviewed and briefly related to the goals of the program of geometric quantization. Introduction and Background Purpose and achievements The goal of the present work is to present a conceptually simple, geometric prescription for quantization. Such a goal has been, and continues to be, the...

متن کامل

ua nt - p h / 02 01 12 9 v 1 2 8 Ja n 20 02 Vector coherent state representations , induced representations , and geometric quantization : I . Scalar coherent state representations

Coherent state theory is shown to reproduce three categories of representations of the spectrum generating algebra for an algebraic model: (i) classical realizations which are the starting point for geometric quantization; (ii) induced unitary representations corresponding to prequantization; and (iii) irreducible unitary representations obtained in geometric quantization by choice of a polariz...

متن کامل

Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations

It is shown here and in the preceeding paper [1] that vector coherent state theory, the theory of induced representations, and geometric quantization provide alternative but equivalent quantizations of an algebraic model. The relationships are useful because some constructions are simpler and more natural from one perspective than another. More importantly, each approach suggests ways of genera...

متن کامل

ua nt - p h / 02 01 13 0 v 1 2 8 Ja n 20 02 Vector coherent state representations , induced representations , and geometric quantization : II . Vector coherent state representations

It is shown here and in the preceeding paper [1] that vector coherent state theory, the theory of induced representations, and geometric quantization provide alternative but equivalent quantizations of an algebraic model. The relationships are useful because some constructions are simpler and more natural from one perspective than another. More importantly, each approach suggests ways of genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005